
Singapore Informatics League 2025

Task Editorial

December 2025

1

Contents
Level 1 3

Task 1: Broken Key . 3
Task 2: Cats and Parking . 5
Task 3: Distribution . 7
Task 4: Duck Fight . 9
Task 5: Bench . 11
Task 6: Schedule . 13
Task 7: Typing Test . 15
Task 8: Ducks, Rabbits and Weirdos . 17

Level 2 19
Task 9: AANDNANDT . 19
Task 10: 90 . 21
Task 11: Fisherman . 23
Task 12: Pringles Sort . 25
Task 13: Bamboo . 27
Task 14: E-sign . 30
Task 15: Investment . 32
Task 16: Bamboo 2 . 34
Task 17: Compressor . 36

Level 3 38
Task 18: Jokers . 38
Task 19: Musical Chairs . 41
Task 20: Volcano . 44
Task 21: Card Draw . 46
Task 22: Cup Stacking . 49
Task 23: Mildly Angry Ducks . 51
Task 24: Tick Tock . 54
Task 25: Mahjong . 56
Task 26: Slimes . 60

Level 4 63
Task 27: Bad Addition . 63
Task 28: Company Management . 65
Task 29: Mixing Sauces . 67
Task 30: Mountain Ranges . 70

2

Level 1

Task 1: Broken Key

Authored by: Brian Lee (penguin133)

Prepared by: Brian Lee (penguin133)

Editorial written by: Brian Lee (penguin133)

Subtask 1

Additional constraints: n = 67 and k = 8

Observe that if n does not contain the digit k, then the answer is 1. This is the solution for
subtask 1, where 67 can be directly formed without the digit 8.

Subtask 3

Additional constraints: n = 20490 and k = 0

In subtask 3, 20490 can be expressed as 19379 + 1111.

Subtask 2

Additional constraints: n = 199 and k = 1

In subtask 2, 199 cannot be formed with 2 non-negative integers that both do not contain k = 1,
because at least one of the integers will be in the range 100 . . . 199. Hence, the minimum answer
for this subtask is 3, expressed as 99 + 98 + 2.

Task Editorial Singapore Informatics League 2025 3

Subtask Answer
1 1
2 3
3 2

Task Editorial Singapore Informatics League 2025 4

Task 2: Cats and Parking

Authored by: Ernest Kiew (Shor the Duck)

Prepared by: Chua Wee Chong (sheep) and Ernest Kiew (Shor the Duck)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: n = 15, all parking spots are empty.

In subtask 1, all spots are empty. As a result, the number of consecutive empty spots on all days
is equal to the length of the parking lot which is n = 15.

Subtasks 2 and 3

Additional constraints for Subtask 2: n = 15

Additional constraints for Subtask 3: n = 26

We note that any range of consecutive empty spots in the original array could be a possible
answer.

Consider a range of spots to be almost-consecutive if linking the first and last spots together
would make the spots consecutive. Almost-consecutive ranges of empty spots could also be
possible answers.

For example, if there are 2 empty spots at the front of the parking lot, and 4 empty spots at the
back, we can wait for 4 days for all these empty spots to “move” towards the start, making them
consecutive.

Hence, the answer is the maximum length over all consecutive and almost-consecutive ranges
of empty spots.

In subtask 2, the answer is 3, with a consecutive range of empty spots.

In subtask 3, the answer is 5, with an almost-consecutive range of empty spots.

Task Editorial Singapore Informatics League 2025 5

Subtask Answer
1 15
2 3
3 5

Task Editorial Singapore Informatics League 2025 6

Task 3: Distribution

Authored by: Chua Wee Chong (sheep)

Prepared by: Brian Lee (penguin133) and Chua Wee Chong (sheep)

Editorial written by: Brian Lee (penguin133)

Subtask 1

Additional constraints: n = 2 and t = 100

For subtask 1, since there are only n = 2 people, we should try to split the 100 apples as evenly
as possible. Since both cannot each have 50 apples, the next best distribution is for one person
to have 49 apples and the other to have 51.

Hence, the answer for subtask 1 is 49.

Subtask 2

Additional constraints: n = 10 and t = 55

Consider trying to give the person with the least apples 1 apple. Then, to minimise the total
number of apples given, the next person should have 2, third person should have 3, and so on
until the last person who gets n = 10 apples. The total number of apples distributed turns out
to be exactly equal to m = 55.

It follows that the answer is 1, since it is impossible for any person to receive more apples.

Subtask 3

Additional constraints: n = 20 and t = 300

Suppose the person with the smallest number of apples has x apples. For a valid distribution
with a minimum sum of apples, we would need the other people to have x + 1, x + 2, · · · ,
x+ n− 1 apples respectively.

Task Editorial Singapore Informatics League 2025 7

Effectively, we want the largest x such that x+ (x+ 1) + (x+ 2) + · · ·+ (x+ n− 1) ≤ s.

Trying a few values of x in subtask 3, we can obtain the answer 5.

Subtask Answer
1 49
2 1
3 5

Task Editorial Singapore Informatics League 2025 8

Task 4: Duck Fight

Authored by: Lim Rui Yuan (oolimry)

Prepared by: Ryan Goh (rgca)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: n = 12 and a[1] = a[2] = · · · = a[n]

All cards have equal power, which means that the total power of any person is equal to the
power of a card multiplied by the number of cards taken.

In order to have a strictly greater power than the other person, you must take strictly more
cards.

You can take 7 cards at minimum, leaving 5 cards for oolimry. Hence, 7 is our final answer.

Subtask 2 and 3

Additional constraints for Subtask 2: n = 5

Additional constraints for Subtask 3: n = 12

To find the optimal answer, you should play the role of Shor.

To maximise your total power, you should take the highest cards first. As this also prevents
oolimry from taking those higher power cards, this is the optimal strategy.1

As such, if Shor decides to choose x cards, he does no worse by taking the x cards with highest
power.

By trying various values of x, you can obtain the answer. You can try all values of x if you have
more time, or you can try some middle value of x, and adjust upwards or downwards until you
find the answer (similar to a binary search).

1Mathematical proof by Exchange Argument omitted for simplicity.

Task Editorial Singapore Informatics League 2025 9

Subtask Answer
1 7
2 2
3 4

Task Editorial Singapore Informatics League 2025 10

Task 5: Bench

Authored by: Brian Lee (penguin133)

Prepared by: Brian Lee (penguin133)

Editorial written by: Brian Lee (penguin133)

Subtask 1

Additional constraints: n = 4278 and m = 2 There are only m = 2 people, so they should be
seated on both ends of the row of seats. Since the first person is at seat 1 and the other person is
at seat n, d = n− 1.

The answer is 4278− 1 = 4277.

Subtasks 2 and 3

Additional constraints for Subtask 2: n = 8 and m = 3

Additional constraints for Subtask 3: n = 9996 and m = 35

Suppose we want to construct a configuration with an answer of d. One such contruction is for
person 1 to sit at seat 1, then the next person to sit at seat d+ 1, then 2d+ 1, . . . , (m− 1)d+ 1,
where each person sits d spaces away from the previous person.

This means that we would require at least (m−1)d+1 seats to achieve an answer of d; in other
words. (m− 1)d+ 1 ≤ n must hold for a value of d to be achievable.

Rearranging terms, we get d ≤ n− 1

m− 1
, and since d has to be an integer, the maximum value of

d is
⌊
n− 1

m− 1

⌋
.

For subtask 2, we have d =

⌊
8− 1

3− 1

⌋
= 3.

For subtask 3, we have d =

⌊
9996− 1

35− 1

⌋
= 293.

Task Editorial Singapore Informatics League 2025 11

Subtask Answer
1 4277
2 3
3 293

Task Editorial Singapore Informatics League 2025 12

Task 6: Schedule

Authored by: Brian Lee (penguin133)

Prepared by: Brian Lee (penguin133) and Chua Wee Chong (sheep)

Editorial written by: Brian Lee (penguin133)

Subtask 2

Additional constraints: n = 30, k = 6 and s[i] = X for all 1 ≤ i ≤ n

In subtask 2, Alice is undecided on every day. Alice should work for k days and rest for 1 day
repeatedly to maximise the number of working days.

We can split the n days into blocks of k + 1 days, where in each block she works for k days.
For the leftover days, Alice will also work since the last day before these leftover days is a rest
day.

Hence, Alice will work for 6 ·
⌊

30

6 + 1

⌋
+

(
30− (6 + 1) ·

⌊
30

6 + 1

⌋)
= 26 days.

Subtask 1 and 3

Additional constraints for Subtask 1: n = 10 and k = 3

Additional constraints for Subtask 3: n = 30 and k = 4

To solve the full problem, we can adapt the above idea for an arbitrary string. We can perform
the replacement as follows:

• Process each day one by one, in sequence. If the current day is undecided, make Alice
work on that day if it does not result in her working more than k days consecutively.
Otherwise, she should rest on that day.

This is known as a greedy algorithm, and we will prove that it will achieve the largest possible
number of work days. (Note that rigorously proving the solution is not expected of contestants
during the contest.)

Task Editorial Singapore Informatics League 2025 13

Let the work schedule generated by the greedy algorithm be G, and let any optimal work sched-
ule be O. Assuming that O ̸= G, we will show that O can be transformed into G without
reducing the number of days worked, which implies that the number of days worked in O is
equal to the number of days worked in G.

Consider the first day i where G[i] ̸= O[i]. If G[i] = R and O[i] = W, it would mean that O
violated the condition of not working for more than k days, since the greedy algorithm would
have chosen to work on day i otherwise. If G[i] = W and O[i] = R, then there must exist a day
j > i where G[i] = R and O[i] = W (otherwise, O has strictly less days worked than G, and O
is sub-optimal). Choose the smallest such j. Then, swap O[i] with O[j] to obtain a new optimal
solution O′. O′ does not violate the condition,2 and contains the same number of working days
as O. By repeatedly performing these swaps, we can eventually transform O into G.

The above proof is known as an exchange argument, a common proof technique for greedy
algorithms.

Using this algorithm, we obtain an answer of 7 for subtask 1 and 20 for subtask 3.

Subtask Answer
1 7
2 26
3 20

2This is because G[i+ 1] = O[i+ 1], G[i+ 2] = O[i+ 2], . . . , G[j − 1] = O[j − 1].

Task Editorial Singapore Informatics League 2025 14

Task 7: Typing Test

Authored by: Chua Wee Chong (sheep)

Prepared by: Chua Wee Chong (sheep)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: n = 9, there is exactly one ‘a’ in s

Input:

9
AAAAaAAAA

We use the one allowed change to change the middle ‘a’ character into ‘A’.

This allows us to “bridge” the gap between the two continuous segments of ‘A’, so we can
complete the whole string with Caps Lock on.

However, since Caps Lock is initially off, we press it once to turn it on, hence the answer is 1.

Subtasks 2 and 3

Additional constraints: n = 20

Input for Subtask 2:

20
aAAaAAAaaaAAaaAAaaAA

Input for Subtask 3:

20
aaAAaaAAaaAAaaAAaaAA

Task Editorial Singapore Informatics League 2025 15

Let’s start by counting the number of Caps Lock presses each takes before modifying the string,
which is the number of times we see a change in capitalisation between adjacent letters. (Note:
if the starting letter was an ‘A’, we would add one as well, since Caps Lock is initially off, but
this was not in our inputs.)

This count is 9 for both inputs.

In subtask 2, we can use the same idea of “bridging” the gap, where we change the 4th character
from ‘a’ to ‘A’, reducing our Caps Lock count by two, reaching an answer of 7.

In subtask 3, there are no “gaps” of size 1 that we can bridge.
Notice that if we change any letter, it would not change the number of changes in capitalisation
between adjacent letters, as it would only move the place where it changes by one space.

Hence, any changes would not improve our answer, and we can either do a meaningless change
or none at all, resulting in an answer of 9.

Subtask Answer
1 1
2 7
3 9

Task Editorial Singapore Informatics League 2025 16

Task 8: Ducks, Rabbits and Weirdos

Authored by: Lim Rui Yuan (oolimry)

Prepared by: Brian Lee (penguin133) and Chua Wee Chong (sheep)

Editorial written by: Brian Lee (penguin133)

Subtask 1

Additional constraints: h = 8 and l = 40

There are 8 heads and 40 legs. We can try every possible number of weirdos (from 1 to 8) and
check if there exists some number of ducks and rabbits that satisfy h heads and l legs.

Trying every possibility gives an answer of 6, and there are 2 ducks and 0 rabbits.

Subtask 2

Additional constraints: h = 20 and l = 119

We need to narrow down our search range for the number of weirdos, since we now have 20
heads and 119 legs. Notice that if we have w weirdos and each weirdo has w legs, the weirdos
would have a total of w2 legs. This means that w2 ≤ l for a valid solution to be possible, and
hence we can narrow our search range to 1 ≤ w ≤

√
l.

Trying every possibility in this range gives an answer of 9, and there are 4 ducks and 7 rabbits.

Subtask 3

Additional constraints: h = 407 and l = 2819

h and l are now both huge. Immediately, using the idea from subtask 2, we can narrow down
the range of w to 1 ≤ w ≤

√
l, or 1 ≤ w ≤ 53.

Now, let us fix w, the number of weirdos, and let x be the number of ducks and y be the number
of rabbits.

Task Editorial Singapore Informatics League 2025 17

For w to produce a valid solution, it must hold that:

• x+ y = h− w, and

• 2x+ 4y = l − w2.

Looking at the second equation, since the left hand side is even, l − w2 must be even for there
to be integer solutions of x, y. Hence w must be odd.

Next, since we know that 2(h− w) ≤ 2x+ 4y ≤ 4(h− w), it holds that 2(h− w) ≤ l− w2 ≤
4(h− w).

Hence, we can quickly derive a range of w that satisfies this using manual binary search or by
trying all possibilities (if you are resilient).

The final answer for subtask 3 is 37, where a possible solution is 15 ducks, 355 rabbits and 37
weirdos.

Subtask Answer
1 6
2 9
3 37

Task Editorial Singapore Informatics League 2025 18

Level 2

Task 9: AANDNANDT

Authored by: Lim Rui Yuan (oolimry)

Prepared by: Kang Yiming (kym2006)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: |s| = 29

Since the length of the string is small, it is enough to manually examine the 1st, 4th, 7th, 10th,
· · · , 22nd, 25th, 28th characters for ‘A’.

Subtask 2

Additional constraints: |s| = 233

To make it easier, you should split the process into finding all occurrences of “AND” and deleting
them, then counting the number of ‘A’s left in the string.

Subtask 3

Additional constraints: |s| = 199997

There are multiple interesting solutions.

Solution 1: Ctrl + F

By opening the input in some text editors (unfortunately you’ll need to find one that works for
you), you can use the shortcut Ctrl + F to count all occurrences of “AND” and all occurrences
of ‘A’.

Task Editorial Singapore Informatics League 2025 19

Then, the answer is just the number of ‘A’s minus the number of “AND”s, as each “AND” only
contains one ‘A’.

Solution 2: Code

You can perform the same occurrence checking as in the Ctrl + F solution, or just add one to a
counter every time the 1st, 4th, 7th, · · · character is an ‘A’.

Solution 3: Algebra

If we start with a string of length n, n − 1 “AND”s are generated, resulting in a length of
n+ 3(n− 1) = 4n− 3.

As such, we know that the initial string length is (199997 + 3)/4 = 50000, and hence the
number of “AND”s is 49999.

The number of “A”s can be found through some random website, which counts 74962. (I just
searched find number of each character on Google)

Hence, the answer is 74962− 49999 = 24963.

Subtask Answer
1 3
2 18
3 24963

Task Editorial Singapore Informatics League 2025 20

Task 10: 90RP Manifestation

Authored by: Ernest Kiew (Shor the Duck)

Prepared by: Ryan Goh (rgca)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: tc = 3, x = 0, and y = 0

Since both x = 0 and y = 0, every operation aside from deleting a character is free.

It is easy to show that we need at least n− 2 cost, as we need to reduce the length of the string
from n to 2, and a delete is the only way to do that, costing 1 for each character deleted.

Then, we can always achieve n − 2 cost, as we can just keep only the first two characters, and
turn them into 90 without extra cost.

Hence, n− 2 is the answer for all test cases.

Subtask 2 and 3

Additional constraints for Subtask 2: tc = 3, n = 10, x = 1, and y = 1

Additional constraints for Subtask 3: tc = 5

Using what we learnt from Subtask 1, we will only keep two digits from the original string and
add n− 2 to our cost.

We do not need to increase or decrease digits we will delete anyways, so we can safely ignore
deleted digits.

Now, we only need to decide which two digits to keep. If you’re doing subtask 2, you can
simply try every option.

However, if you’re doing subtask 3, we need to be more clever in how we pick these digits.

Consider what happens if we pick digits a and b. (a comes before b)

Task Editorial Singapore Informatics League 2025 21

We need to turn one of these two to 9, and the other to 0.
Notice that because we are able to reverse for free, it doesn’t matter which turns into 9 and
which turns into 0.
As such, we’ll only consider a becoming 9.

If we turn a into 9, the extra cost incurred would be (9− a) · x.
If we turn b into 0, the extra cost incurred would be b · y.

Since we can pick any two digits for a and b, it is optimal to choose the largest a possible, and
the smallest b possible.

This is very easily doable in any programming language or even an excel sheet. Do note that if
you are doing it in a programming language such as C++, characters may be stored as ASCII
values, which means you can use (s[i] - ’0’) to get the numeric value of the i-th digit of
s.

Subtask Answer
1 44991
2 31
3 164187

Task Editorial Singapore Informatics League 2025 22

Task 11: Fisherman

Authored by: Brian Lee (penguin133)

Prepared by: Brian Lee (penguin133)

Editorial written by: Brian Lee (penguin133)

Subtask 1

Additional constraints: tc = 1, n = 3, l = 7, q = 4, and
∑

t[i] = 49

In this subtask, all the variables have very small values. We can simulate each of the fish moving
manually, and check if the fish are at the desired position at the desired time for each query.

In this case, Ryan catches a total of 2 fish.

Subtask 2

Additional constraints: tc = 1, n = 100, l = 500, q = 1000, and
∑

t[i] = 100000

In this subtask, the values are too large to work out by hand. Instead, we will convert our idea
from subtask 1 into code. For each query, we will simulate each of the fish moving for t[i]
seconds, and find out whether the fish ends up at position x[i].

Using this method, we will be able to obtain a final answer of 483.

Time complexity: O(n ·
∑

t[i] + q)

Subtask 3

Additional constraints: tc = 2, n = 100000, l = 500000, q = 200000, and
∑

t[i] = 1015

To solve this subtask, we will have to make a few optimisations to our algorithm.

Firstly, notice that since we only need to know whether a single fish can be caught for each
query, we can instead simulate our desired position moving backwards t[i] times, then checking

Task Editorial Singapore Informatics League 2025 23

whether a fish exists at that initial position. Since we are only simulating the movement of 1
item instead of n fish, this removes the factor of n from the time complexity.

Additionally, notice that after the desired position is moved backwards l times, it will end up in
exactly the same position it was at l seconds later. This means that we only need to consider the
movement of the position for t[i] % l seconds, where the % sign here denotes the remainder of
t[i] when divided by l. From here on, we assume that t[i] := t[i] % l.

This movement does not have to be simulated each second at a time. We know that if x[i] > t[i]
then a fish does not have to teleport to reach position x[i] after t[i] seconds, so we just need to
check for a fish at position x[i]− t[i]. Otherwise we know that a fish has to teleport once, so its
initial position has to be x[i]− t[i] + l.

To quickly check for the presence of a fish at any position, we can use a boolean array to keep
track of the positions that initially have fish.

Combining these optimisations, we obtain the answer of 159943, and our code will run in
O(n+ q).

Subtask Answer
1 2
2 483
3 159943

Task Editorial Singapore Informatics League 2025 24

Task 12: Pringles Sort

Authored by: Sun Beichen (TheRaptor)

Prepared by: Sun Beichen (TheRaptor)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: n = 6

Since n is sufficiently small, you can try operations manually until you solve it.

For a more rigorous solution, see the observations and ideas below.

Subtask 2

Additional constraints: n = 3000

Firstly, let’s understand what occurs when we use operations on multiple elements.

If we use an operation on X , then on Y , then on Z in the array {a, b,X, c, d, Y, e, Z, f}, we get
the array {a, b, c, d, e, f, Z, Y,X}.

You will notice that the elements that we chose to use operations on, appear at the back of the
array in reverse order.

Since we know that the final array must be {1, 2, · · · , n− 2, n− 1, n}, we realise that if we use
operations on k elements, they have to be the largest k elements in the array.

Since we know that the elements appear in reverse order of our operations, we just operate on
these k elements from smallest to largest.

It is sufficient to try all possible k from 0 to n to solve the problem, as it takes O(n) time to
construct the array resulting from each value of k, and doing this for all O(n) values of k gives
us a final time complexity of O(n× n) = O(n2).

Task Editorial Singapore Informatics League 2025 25

Subtask 3

Additional constraints: n = 1000 000

We further refine our observations by considering what the array looks like after k operations.

We realise that the last k elements are always correctly sorted, since we used operations in the
correct order.

Therefore, the full array is sorted if and only if the other n−k unselected elements are in correct
order, which would be {1, 2, 3, · · · , n− k − 1, n− k}.

Since we want to minimise k, we want to maximise n − k, which would represent the number
of unselected elements.

Hence, we want to find the longest sequence of elements that forms the ‘staircase’ pattern of
{1, 2, 3, · · · , n− k − 1, n− k}, as these would become our unselected elements.

This is achievable by iterating through the array and keeping a counter of the next value we
need in the staircase pattern, and adding 1 to the answer and the counter when the current value
in the array matches the counter.

The final value of the counter will be 1 greater than the length of the staircase, so we can
calculate the length of the staircase as counter − 1.

Then, the number of selected elements is the number of elements outside the staircase, which
would then be n− (counter − 1).

Outputting this value will give us the solution in O(n) time complexity.

Subtask Answer
1 4
2 2179
3 565989

Task Editorial Singapore Informatics League 2025 26

Task 13: Bamboo

Authored by: Lim Chang Jun (lcjly)

Prepared by: Brian Lee (penguin133)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: tc = 3, n = 3, and k ≤ 40

You can manually work out the minimum number of distinct heights achievable by trying to
equate each pair of elements, and seeing if it’s possible.

Then, grouping elements into sets of elements that must become equal, you find the minimum
operations for each set and sum the operations to solve the problem.

For further elaboration, read below.

Subtask 2

Additional constraints: tc = 2, n = 10000, and k = 1

Firstly, notice that when k = 1, you can make any pair of elements a and b equal by adding 1 to
the smaller element repeatedly.

As such, we know that the minimum number of distinct heights is exactly one, and all bamboo
heights must be equal at the end.

Then, we must decide what the final bamboo height level will be.

Since increasing the final bamboo height level would increase the number of operations, we
seek to minimise the final bamboo height level.

As the height of bamboo cannot decrease, the minimum height achievable is always at least the
height of the maximum initial bamboo height.

Since we can always have the final height be the maximum initial bamboo height, that is opti-

Task Editorial Singapore Informatics League 2025 27

mal.

The number of operations for a bamboo starting at height x and ending at height y is just y− x,
so sum this value for all bamboo with y = max(h) to get the final answer.

Subtask 3

Additional constraints: tc = 5, n = 10000, and k ≤ 10000

Now that k is no longer equal to 1, we must consider which elements can end up equal.

Given a pair of elements a and b, we want to make them equal by adding k repeatedly to the
smaller element.

However, sometimes this will not work, as for the case a = 2, b = 5, k = 6.

Trying some cases, or through some intuition, you may notice that the elements can only be-
come equal if and only if the difference between the a and b is a multiple of k, which is equiva-
lent to saying that a and b have the same remainder when divided by k.

Mathematically speaking (can be ignored if you do not understand math), we understand that
by adding k to a, the remainder of a

k
does not change, and as such, the value of a (mod k) and

b (mod k) is constant, and hence must be equal from the beginning.

a ≡ b (mod k)

(a− b) ≡ 0 (mod k)

Back to solving the problem, we can then group elements by their remainder when divided by
k.

Then, within each group, we apply the solution to Subtask 2 with slight changes, setting y to be
the largest initial height within the group, and the number of operations for a bamboo starting
at height x and ending at height y being (y−x)

k
.

Since the number of elements within each group totals to n, and the time taken to process each
group is O(m) where m represents the number of elements in the group, we get a total time
complexity of O(n). (This time complexity is obtained through amortised analysis, it is good
to look this up if you don’t know what this is.)

Task Editorial Singapore Informatics League 2025 28

Subtask Answer
1 5
2 5015390891215
3 1545204087770

Task Editorial Singapore Informatics League 2025 29

Task 14: E-sign

Authored by: Brian Lee (penguin133)

Prepared by: Brian Lee (penguin133)

Editorial written by: Brian Lee (penguin133)

Note

We can rewrite the problem as follows:

There are n people. For each person i, find how many times another person (other than person
i) signed the document in between the time Ryan sent the document to person i for the first time
and the time that person i signed the document.

Subtask 1

Additional constraints: n = 6

This subtask can be done by hand. Write down the number of times Ryan sent the document to
each person on a piece of paper, and manually update the counts for each event.

Doing this, you will get an array a of [1, 1, 2, 3, 1, 1], and the output value will be 32.

Subtask 2

Additional constraints: n = 2000

To answer this subtask, we can directly simulate each event using code. Maintain a list of all
the people who Ryan has sent the document to but have yet to sign it, as well as a counter array
to keep track of how many times the document was sent to each person.

Each time Ryan sends the document to a new person, add that person to the list. Then, when a
person signs the document, increment the counter array for the people in the list by 1. This will
ensure that our final counter array will be equal to our desired array a.

Task Editorial Singapore Informatics League 2025 30

Using this array, we can then obtain an output of 1353562740.

This code should run in a time complexity of O(n2).

Subtask 3

Additional constraints: n = 200 000

To solve this subtask, we need to speed up our solution for subtask 3.

Solution 1

We can maintain a running counter of how many people have signed the document at each
point in time. When Ryan sends the document to a new person x, record the number of people
who have signed so far under some array b[x]. When person x does finally sign the document,
increment the counter, and record this new counter value under another array c[x].

From here, an observation can be made that for person x, the number of times that he was
sent the document is exactly equal to c[x] − b[x], since the number of people who signed the
document before person x signs the document is c[x] and the number of people who signed the
document before person x receives the document for the first time is b[x].

Using this, we can obtain a[x] = c[x] − b[x] for all x and we can obtain our final output value
of 1333442114745347.

This solution runs in O(n).

Solution 2

For a person i, we notice that a[i] is exactly equal to the number of 1 events that occur in
between the event ”0 i” and the event ”1 i”. To find a[i], we can perform some precomputation
and calculate a[i] using prefix sums.

This solution also runs in O(n), and gives the same output value of 1333442114745347.

Subtask Answer
1 32
2 1353562740
3 1333442114745347

Task Editorial Singapore Informatics League 2025 31

Task 15: Investment

Authored by: Lim Rui Yuan (oolimry)

Prepared by: Kang Yiming (kym2006) and Brian Lee (penguin133)

Editorial written by: Ernest Kiew (Shor the Duck)

Note

Due to the interesting constraints of this problem, I won’t go over how to do each subtask
individually, but rather give an overview of the problem.

Subtask 1, 2 and 3

Additional constraints for Subtask 1: n = 3, d = 100, x = 80, y = 65, r = 3, and t = 200

Additional constraints for Subtask 2: n = 50, d = 1, x = 2000 000, y = 0, r = 2, and
t = 2000 000

Additional constraints for Subtask 3: n = 30, d = 10, x = 108, y = 4, r = 2, and t = 109

The problem asks you to find the minimum number of thrifty months you need to retire at the
end.

The key is to realise that months that you are thrifty for, should come at the start.

The proof: we can consider being thrifty for a month as adding x − y to your current money,
then all months have a fixed expenditure of x.

Then, it is clear that being thrifty is equivalent to a boost of current money.

We need to prove that it is optimal to boost our money in the earlier months.

Since x− y, the saving for being thrifty, is constant for all months, if we boost in month 1, that
money will be invested and give us even more money for future months.

However, if we boost in later months, we will not have the opportunity to invest that money as
many times, and hence we only lose out in money by shifting boost later on.

Task Editorial Singapore Informatics League 2025 32

Therefore, it is optimal to always be thrifty for the first x months, for some value of x.

Since x is small, between 0 to n, we can try every possible x and find the minimum working x.

The use of spreadsheets can significantly simplify the solving process, leading to a no-code
solution.

Subtask Answer
1 −1
2 22
3 28

Task Editorial Singapore Informatics League 2025 33

Task 16: Bamboo 2

Authored by: Ernest Kiew (Shor the Duck)

Prepared by: Ernest Kiew (Shor the Duck)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: n = 1, k = 8

Manually calculate the outcome of the bamboo.

Subtask 2

Additional constraints: n = 1000 and k = 13

For each bamboo, iterate through all 13 days and find the maximum height reached, resulting
in an O(nk) time complexity solution.

Subtask 3

Additional constraints: n = 100 000

Since k can be up to 109, we have to calculate the answer with more brainpower.

We observe that for large k, the heights of a bamboo tend to get stuck in a cycle:

For a = 3, b = 53, c = 5, the heights on each day are:
{ 3, 6, 12, 24, 48, 96 (cut to 5) ,
10, 20, 40, 80 (cut to 5) ,
10, 20, 40, 80 (cut to 5) ,
10, 20, 40, 80 (cut to 5) , · · · }

As you can see from the colouring, there are two parts of the lifecycle of a bamboo.

Task Editorial Singapore Informatics League 2025 34

At first, it starts with {a, 2a, 4a, · · · }, before any cut occurs.

Then, once a cut occurs, it continues with {c, 2c, 4c, · · · }, resetting with each cut.

We notice that because of how the growth of bamboo is exponential, a cut will occur within the
first 32 days, as a× 232 > b for any value of a and b.

Then, the next cut for all cuts will also occur within 32 days, as c × 232 > b for any value of c
and b.

Now, to find the maximum height reached, we only need to find the maximum height reached
in the pink section and in one of the green sections, as all green sections are identical.

Since it is guaranteed that within 64 days, the bamboo has gone through the pink section and at
least one green section, we can ignore large values of k, setting k to no more than 64.

Hence, we can solve the problem in O(64n).
(If you wish to be pedantic, it is O(n log(max(b))).)

Subtask Answer
1 16
2 944954990278
3 94941123772256

Task Editorial Singapore Informatics League 2025 35

Task 17: Compressor

Authored by: Chua Wee Chong (sheep)

Prepared by: Lim Chang Jun (lcjly)

Editorial written by: Lim Chang Jun (lcjly)

Subtask 1

Additional constraints: 3 ≤ n ≤ 5000

This subtask can be solved by doing a naive simulation as described in the problem statement.
The overall time complexity of such a solution is O(n2).

Subtask 2

Additional constraints: 3 ≤ n ≤ 106 and there are only two ‘0’s in s

This subtask is meant to help participants find the full solution for this problem. Let i, j (1-
indexed and i < j) be the indices of the two 0s.

Case 1 (j − i ≥ 3):
Notice that after the first compression, the resulting string will consist only of the character 1,
resulting in the final remaining character being 1.

Case 2 (j − i = 2):
After the first compression, there will be exactly one occurrence of the character 0 at index i+1,
while the rest of the characters (possibly none) will be 1. If n = 3, the character 0 will be the
only character after one compression, which means that the final character will be 0. However,
if n > 3, since there is only one occurrence of character 0, it would not be the most frequent
character in any substring of length 3. Therefore, the string after two rounds of compression is
guaranteed to consist only of the character 1, hence the final character will be 1.

Case 3 (j − i = 1):
Let m be the current length of the string. If i ̸= 1 and j ̸= m, then after one compression
there will still be two occurrences of the character 0 at indices i − 1 and j − 1. However, if
i = 1 or j = m, then after one compression, there will only be one occurrence of the character
0, which will disappear after another round of compression. The zeros will disappear after

Task Editorial Singapore Informatics League 2025 36

min(j,m− i+1) rounds of compression. Since each compression reduces the string length by
2, there can only be n−1

2
rounds of compression in total. Therefore, min(j, m − i + 1) > n−1

2

implies that the final remaining character will be 0.

Let mid = (n+1)/2. It follows that the final remaining character is 0 if and only if i = mid or
j = mid.

Subtask 3

Additional constraints: 3 ≤ n ≤ 106

If the character at index mid is the same as at least one of its adjacent characters (i.e. mid− 1
or mid + 1), then there exists a contiguous block of length at least 2 consisting of either only
1s or only 0s. Any substring of length 3 intersecting this block will have this character as the
majority, so it will never be removed in future compressions. In this case, the final remaining
character is already determined and the process is finished.

Otherwise, we must have s[mid − 1] ̸= s[mid] and s[mid + 1] ̸= s[mid]. This means that
s[mid − 1] = s[mid + 1] ̸= s[mid], meaning that the string is alternating around the middle.
Now consider the next compression. The new middle position, denoted by mid′, is produced
from the substring of length 3. This substring is either 010 or 101, so the majority character is
not equal to the middle one, and hence the new middle character satisfies s[mid′] = s[mid− 1].

We now repeat the same check at mid′. If the character at mid′ matches one of its adjacent
characters, then we are done as before. Otherwise, both adjacent characters of mid′ must be
different from s[mid′], which again forces them to be equal to each other. Tracing this back to
the original string, this implies that s[mid− 2] ̸= s[mid− 1] and s[mid+ 2] ̸= s[mid+ 1], so
the alternating pattern must extend one step further outward.

By continuing this argument inductively, we see that as the center substring’s characters alter-
nate between 0s and 1s, the middle character would alternate as well. Eventually, either the
alternation breaks at some position, or the alternation extends to the entire string. The final re-
maining character would be the first character of the longest possible alternating string centered
around the middle. This algorithm runs with a time complexity of O(n).

Subtask Answer
1 10000
2 11011
3 10010

Task Editorial Singapore Informatics League 2025 37

Level 3

Task 18: Jokers

Authored by: Ernest Kiew (Shor the Duck)

Prepared by: Ernest Kiew (Shor the Duck)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: m = 1, b[1] = 1

Given that there is only one mult joker, we can just try both having it, and not having it.

Then, in either case, it is optimal to take the highest untaken chips joker until we fulfil the
total score requirement.

Time complexity: O(n log n), with the bottleneck being sorting for highest chips jokers.

Subtask 2

Additional constraints: n, m ≤ 1 000,
∑

n ≤ 10 000 and
∑

m ≤ 10 000

Similarly to the idea that we should only take the highest untaken chips joker, we can do the
same for mult jokers.

To clarify, if we sort the chips and mult jokers by value in descending order, the highest
score achievable with some number of jokers can be achieved with some prefix of chips
jokers and some prefix of mult jokers. (Both prefixes possibly being empty)

We can naively try every prefix of chips and mult jokers, as long as we maintain the total
sum of the prefix while iterating through each prefix, resulting in an O(n2) time complexity.

Task Editorial Singapore Informatics League 2025 38

Subtask 3

Additional constraints: n, m ≤ 1 000 000,
∑

n ≤ 10 000 000 and
∑

m ≤ 10 000 000

To speed up the search, we can use the technique of Binary Search the Answer (informally
known as BSTA).

We can prove that if some number of jokers x is sufficient to achieve the score requirement,
then all numbers of jokers greater than x can achieve the score requirement as well, as adding
one joker can only increase the score.

Similarly, we can prove that if some number of jokers x is insufficient to achieve the score
requirement, then all numbers of jokers lesser than x cannot achieve the score requirement as
well, as removing one joker can only decrease the score.

This proves monotonicity of our answer, as there is a point at which all answers at or after that
point is valid, and all answers before that point are invalid.

By maintaining the range of possible but unchecked answers, we can ”guess” an answer in the
middle, and by determining if that middle answer is valid or not, we can choose to only look
at smaller answers or larger answers, and hence cutting the range of possible but unchecked
answers in half.

Since our answer lies in the range of [0, n+m], we know that the number of answer checks we
will need will not exceed O(log(n +m)), as that is the number of times we can cut the range
in half before it reaches a size of 0.

Now that we know Binary Searching the Answer is valid, we can work on the checking problem:

Given an answer g, determine if g jokers is sufficient to reach the score requirement.

This is a simpler problem than the original one, and by iterating through the number of chip
jokers from 0 to g, you can also determine the number of mult jokers as g − chips, where
chips is the number of chip jokers.

By maintaining the sum of the prefixes, this can be done in O(n+m) time.

Since the time complexity of Binary Search the Answer is O(log(numAns) × timeCheck)
where numAns is the number of possible answers and timeCheck is the time complexity of
the checking function, we conclude with a time complexity of O((n +m) log(n +m)), which
is fast enough to pass.

Task Editorial Singapore Informatics League 2025 39

Subtask Answer
1 8111599
2 70419
3 76106593

Task Editorial Singapore Informatics League 2025 40

Task 19: Musical Chairs

Authored by: Chua Wee Chong (sheep)

Prepared by: Ryan Goh (rgca) and Chua Wee Chong (sheep)

Editorial written by: misalignedDiv and Ernest Kiew (Shor the Duck) (editing)

Note

The input is already sorted in increasing c[i], and for brevity, Position will be abbreviated as
Pos.

Furthermore, we will treat the input as part of {d[i], c[i]} pairs.

Subtask 1

Additional constraints: d[i] = L for all 1 ≤ i ≤ n We can greedily shift the people to the
leftmost position.

For example, for the input:

n = 51, m = 6
{L, 9}, {L, 11}, {L, 20}, {L, 23}, {L, 34}, {L, 51}

Shift the person at Pos 9 to Pos 1, the person at Pos 11 to Pos 2, · · · , the person at Pos 51 to Pos
6.

Simply summing the difference in starting position and ending position for each person will
give you the answer.

Although this is not relevant for now, if the input is the opposite, where all d[i] = R, we should
shift them all to the rightmost position.

Task Editorial Singapore Informatics League 2025 41

Subtask 2

Additional constraints: All persons with direction R are initially to the left of all persons with
direction L

The left directions will go against the right directions. Lending inspiration from what we learnt
from Subtask 1, we should shift the left people to form a consecutive block of people starting
at index j, and all right chairs to form a consecutive block of people ending on index j − 1 to
ensure no more moves can be made.

To clarify:

People: R R R L L L
Indices: ... j-3 j-2 j-1 j j+1 j+2 ...

j should be ≥ the pos of the rightmost right chair, and ≤ the pos of the leftmost left chair.

We could brute force all possible j to get the optimal j, but since there are O(n) possible values
of j and calculating each one takes O(m) time, this will take O(nm) time, which would take
too long. How do we speed this up?

Let’s say there are a Rs and b Ls.

By shifting j rightwards by one index, we get:

People: R R R L L L
Indices: ... j-2 j-1 j j+1 j+2 j+3 ...

We have moved the L people one step closer to their original pos and the R chairs one step
farther, this means that our result will decrease by a (The a L people move less) and increase
by b (The b R people move more), resulting in a net change of b− a.

If a > b this would result in less shifts.
If a < b this would result in more shifts.
If a = b, there will be no change in shifts.

We realise that by shifting j 1 step rightwards, it will always change only based on the value of
b− a.

Hence, to ensure the max possible result if b > a, the optimal j would be as far right as possible.

if b ≤ a, the optimal j would be as far left as possible.

Task Editorial Singapore Informatics League 2025 42

The furthest right position of j is the furthest left L’s position, and the furthest left position of j
is the furthest right R’s position plus one.

With this we can solve this problem in O(n) time.

Subtask 3

Using what we learnt from Subtask 1, we can ignore the first Rs until the first L appears, as we
can shift them all to the start without interacting with other people.

Similarly, we can ignore the last Ls until a R appears, as we can shift them all to the end without
interacting with other people.

This would clean up the data, and would result in alternating sections of Rs and Ls like this
(ignoring spaces between people):
RRRRLLLLRRRRLLLLL · · · RRRLLL

Let’s call a set of people forming this pattern R · · ·RRRLLL · · ·L as a block.

We can show that each block does not interact with any of the other blocks. As such, we can
solve for each block independently.

Using what we’ve learnt from Subtask 2 we can calculate this distance moved for each block to
get the answer in O(n).

Subtask Answer
1 360358556037
2 199541624813
3 7401359

Task Editorial Singapore Informatics League 2025 43

Task 20: Volcano

Authored by: Lim Rui Yuan (oolimry)

Prepared by: Zhao Yaoqi (zyq1810)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: tc = 3, 1 ≤ l ≤ 20, and 1 ≤ n ≤ 6

This subtask is meant for contestants to understand the problem by working it out manually.

Drawing out the 6 by 6 grid, we realise that the i-th volcano creates a square piece of land of
width and height equal to 2× h[i] + 1, centred on the volcano’s location. (The square might be
cutoff by the boundaries of the grid.)

By drawing out the squares created, we can visually tell how many islands are created.

Subtask 2

Additional constraints: tc = 10, 1 ≤ l ≤ 1000, and 1 ≤ n ≤ 30

Now that the size of the grid is larger, we will need computer assistance.

For each square on the l by l grid, we can iterate through each volcano to see if that volcano
would cover this square (we check ifthe horizontal and vertical distance both do not exceed
h[i] + 1).

This part of the code takes O(tc × l2 × n) time, which is sufficient for running in less than 30
seconds. (We can speed this up through usage of Breadth First Search (BFS) or even further
sped up through Multisource BFS.)

Then, we need to count the number of islands. We do this by using BFS as well. For every
unvisited but covered square, we perform a BFS that visits all covered squares that are connected
to it, and add one to our answer.

While initially it may seem that this algorithm takes O(l2 × l2) time, since our BFS actually

Task Editorial Singapore Informatics League 2025 44

runs in linear time with respect to the number of nodes visited, and we only visit l2 nodes in
total, we have an amortised time complexity of O(l2) for this part of the code.

Combining these two parts allows us to solve this subtask fully.

Subtask 3

Additional constraints: tc = 10, 1 ≤ l ≤ 109, and 1 ≤ n ≤ 5000

Now, we have to speed up our algorithm significantly.

An important clue is that l is very large, and suggests we cannot have our time complexity be
linear or worse with respect to l.

Furthermore, n ≤ 5000 typically suggests a quadratic solution.

As such, we will attempt to find a solution whose runtime is independent of l, but quadratic in
n.

We notice that the pieces of land two volcanoes i and j make, will connect if and only if the
difference in both x-coordinates and y-coordinates is no more than (h[i] + h[j] + 1).

This idea allows us to sidestep the large size of the grid, as we no longer need to work on the
grid to determine the number of islands. We can make an equivalent definition of island as a
maximal group of volcanoes such that each volcano is connected, directly or indirectly, to every
other volcano in the group.

We can then perform the same algorithm of repeated BFS on unvisited nodes, on a graph where
each vertex is a volcano, and an edge exists between volcanoes i and j if the land they create
connects.

In this case, our BFS runs in O(n2) time, as there are O(n2) edges in the worst case.

Subtask Answer
1 6
2 73
3 7146

Task Editorial Singapore Informatics League 2025 45

Task 21: Card Draw

Authored by: Ernest Kiew (Shor the Duck) & Brian Lee (penguin133)

Prepared by: Zhao Yaoqi (zyq1810)

Editorial written by: Ernest Kiew (Shor the Duck)

Subtask 1

Additional constraints: tc = 10, p = 1, and 2 ≤ n ≤ 2× 105

Firstly, we must observe that it is always optimal for Shor to play the highest card in his hand.

This can be quickly proven by Greedy Stays Ahead (but not necessary to prove in-contest), as
playing the highest card means you have a larger prefix of the draw pile in your hand, which
gives you more options of which cards to play while also contributing to the goal of holding
every card.

Any strategy that involves not playing the highest card, can have the lower card played be
replaced by the highest card for an equal or better result.

Simply maintaining the highest card currently in your hand, and simulating playing that card is
sufficient to pass, as there are only O(n) cards in total we can draw, so our time complexity is
an amortised O(n).

Subtask 2

Additional constraints: tc = 10, p = 2, and 2 ≤ n ≤ 1000

It is actually optimal to play the highest card here too, despite having to return the card to the
draw pile.

There is no reason to save the highest card for a later turn, as that means you draw less cards
now, and it will take longer for the highest card to return to your hand.

There is also the possibility that we never play the highest card, but by replacing a lower card
for the highest card, we can prove that this situation’s outcome is always equal or worse than
playing the highest card.

Task Editorial Singapore Informatics League 2025 46

Hence, since saving the highest card for later and never playing the highest card are both equal
or worse to playing the highest card, we should always play the highest card.

However, our time complexity proof for Subtask 1 breaks down.

Consider what happens if our draw pile is {1, · · · , 1︸ ︷︷ ︸
n− 1 times

, 2}

Our hand size starts at 1, but because we return our played card into the draw pile, we play a 1
and return a 1, resulting in our hand size staying at 1.

This repeats n − 2 times, until we finally draw a 2. We can then play the 2, but this results in
our hand consisting of two 1s.

We then have to play 1s n− 2 times before we see a 2 again.

This cycle of playing cards results in O(n2) cards played.

Luckily, Subtask 2’s constraints are small and will allow a simple simulation solution to pass.

We simulate by maintaining a priority queue consisting of all cards in our hand, as we need to
add elements into the priority queue, while removing the largest element.

This gives us a time complexity of O(n2 log(n)), which passes.

Subtask 3

Additional constraints: tc = 10, p = 2, and 2 ≤ n ≤ 2× 105

Notice that our hand size never decreases, since the lowest card is a 1, which when played,
keeps our hand size constant.

I will refer to 1 cards as small and non-one cards as big.

Every time we play a big card, our hand size increases by 1.

Since our hand size is no more than n and can never decrease, we know that our hand size only
increases at most n− 1 times, and hence we can only play n− 1 big cards.

If we can somehow quickly deal with the small cards, we can actually have a reasonable time
complexity.

This gives rise to the idea of compression. Instead of dealing with small cards one-by-one, we
merge adjacent small cards into a group of small cards.

Task Editorial Singapore Informatics League 2025 47

Since we process at most n big cards, and there cannot be two consecutive groups of small cards
(it violates our definition of a group), the maximum number of small card groups we need to
process is where, between every two processed big cards, there is a group of small cards, which
means at most n groups of small cards are processed.

Hence, we can perform simulation after this group compression is done, and since we only
process n big cards and n small card groups, if we process each item in O(log n) time (priority
queue is still necessary), we get a final time complexity of O(n log n).

Subtask Answer
1 323413
2 160304
3 5517262337

Task Editorial Singapore Informatics League 2025 48

Task 22: Cup Stacking

Authored by: Sun Beichen (TheRaptor)

Prepared by: Zhao Yaoqi (zyq1810)

Editorial written by: Sun Beichen (TheRaptor)

Note

A common mistake when attempting this problem is forgetting that a cup cannot be slotted onto
a lower cup if there are 2 cups being supported by the lower cup.

Subtask 1

Additional constraints: tc = 3, 1 ≤ a[i] ≤ 5 for all 1 ≤ i ≤ n, and 1 ≤ n ≤ 5

This subtask is meant for manual trial and error to find the best way to collapse the cups. The
experimentation can in fact provide valuable insights to the full solution.

Subtask 2

Additional constraints: tc = 10, the array a contains one ‘1’ and n− 1 ‘0’s, and 1 ≤ n ≤ 106

In this subtask, the goal is to maximise the final number of cups at one specific index. Let this
index be x. Notice that on the second lowest layer, although 2 cups use the cup on index x as
support, at most 1 cup can be slotted onto index x (it is impossible to move both cups to index
x due to the restrictions on slotting cups). This applies to every layer, so the maximum number
of cups that can be at index x in the end is n. The existence of such a construction is provable
through induction, but the proof is omitted here. Therefore, the answer is to simply output n.

Subtask 3

Additional constraints: tc = 10, 1 ≤ a[i] ≤ 106 for all 1 ≤ i ≤ n, and 1 ≤ n ≤ 106

Task Editorial Singapore Informatics League 2025 49

Participants who attempted subtask 1 may notice an interesting result – the set cup numbers
in the end is a set of all numbers from 1 to n. In fact, the final arrangement will always be a
permutation of numbers from 1 to n, and all permutations can be achieved. This is provable by
induction. As a result, the answer can be found by sorting array a and greedily assigning larger
cup numbers to larger array values.

Inductive proof: We will first prove that for n layers, all final cup arrangements will form a
permutation of numbers from 1 to n.

Base case is true because for a pyramid of 1 layer, the final arrangement is [1].

Assume that it is true for a pyramid of n layers. Consider a pyramid of n + 1 layers. We will
first collapse the top n layers, generating a permutation of 1 to n, before collapsing them onto
the final layer. We can see that exactly 1 cup in the (n + 1)th layer that will not have anything
slotted onto it, while all other cups will have exactly 1 cup stack slotted onto it. This guarantees
the final arrangement being a permutation of [1, 2, ..., n+ 1]. Thus, by induction, the statement
is proven.

We will now show that all permutations are achievable.

Again, the base case is 1 layer, which can achieve all permutations of [1].

Assume that this is true for a pyramid of n layers. Say we have a target permutation of
[1, 2, ..., n + 1] that we want to achieve with n + 1 layers. We can construct this by locat-
ing the index of the element with value 1, removing it from the array, then reducing all other
elements by 1 to generate a permutation of [1, 2, ..., n]. By achieving this permutation using the
top n layers, we can collapse them onto the (n + 1)th layer (while avoiding the index that is
supposed to have value 1) to achieve the target permutation. Since any target permutation can
be constructed through this method, the statement is proven.

Subtask Answer
1 121
2 7552421
3 3157623464083820735

Task Editorial Singapore Informatics League 2025 50

Task 23: Mildly Angry Ducks

Authored by: Sun Beichen (TheRaptor)

Prepared by: Chua Wee Chong (sheep)

Editorial written by: misalignedDiv and Ernest Kiew (Shor the Duck) (editing)

Note: Disintegrate and explode are used interchangeably in this editorial :p

Subtask 1

Additional constraints: 1 ≤ n ≤ 5000

Implementation wise, we can use 2 arrays, a representing the row of ducks on the current day
and b representing the row of ducks on the next day. By scanning through a, we can append the
survived ducks to b, and swap the 2 arrays with each other after scanning. The swap operation
will only take O(1) time as we are just swapping their memory addresses.

With this process, there are at maximum O(n) days and O(n) scans per day, achieving an O(n2)
time complexity, with the worst case scenario being:

[1, 1, 1, 1, 1, · · · , 2, 2, 2, 2]

This is because we have to go through the entire list which takes O(n) per removal. As there
are n removals, this results in an O(n2) time complexity.

Subtask 2

Additional constraints: 1 ≤ n ≤ 2 × 106 and if d[i] = d[j] and i < j, then all d[i], d[i +
1], · · · , d[j] are equal to d[i]

The condition of “If d[i] = d[j] and i < j, then all d[i], d[i + 1], · · · , d[j] are equal to d[i]” is
saying that all elements that are equal must be consecutive.

So instead of listing each duck one by one, we can group consecutive ducks with the same ID
into ranges.

For example, [1, 2, 2, 2, 2, 3, 1, 3, 3] would become [{1, 1}, {2, 4}, {3, 1}, {1, 1}, {3, 2}],

Task Editorial Singapore Informatics League 2025 51

where the 0th number of each curly brace represents the ID of the duck and the 1st number
represents the number of ducks in the range. (Note that this example does not follow the subtask
constraint.)

We realise that the range of ducks at the beginning and end decrease in length by 1 each day,
and the rest decrease by 2.
Since all equal elements are consecutive, we know that these ranges of ducks will never merge
or interact with each other in any other way.
We can use this information to deduce the 1st and the 2nd longest lasting range of ducks (i.e,
largest number of days it lasts), and then calculate the number of ducks left like this.

Subtask 3

Let’s look at our representation of grouping consecutive ducks with the same ID into ranges.

At first glance, this might seem like another O(n2) algorithm in time complexity, but it’s actu-
ally an O(n) algorithm.

Let’s define some variables:
Let n be the number of ducks.
Let k be the length of the range list. (the grouping in Subtask 2)

1. Let’s assume the length of the range list is constant for now.

2. Going through the whole list takes O(k) time.

3. We note that the number of days is not O(n), it’s actually O(n
k
), since ducks explode

at the boundaries of the range, at least k ducks will explode everyday, resulting in O(n
k
)

days

4. Hence, the whole algorithm achieves an O(k × n
k
) = O(n) time complexity

From here, we can see that for each duck explosion, it only affects at most 2 ranges, so we
can handle each explosion in O(1) time. As there are at most n explosions, this algorithm will
therefore achieve an O(n) time complexity.

Do note the important case where [· · · , {3, 6}, {1, 1}, {3, 7}, · · ·] will convert to
[..., {3, 9}, ...] the next day and not [..., {3, 4}, {3, 5}, ...].
Remember to merge ranges of the same ID together!

Task Editorial Singapore Informatics League 2025 52

Subtask Answer
1 4954
2 25590
3 2257469

Task Editorial Singapore Informatics League 2025 53

Task 24: Tick Tock

Authored by: Lim Chang Jun (lcjly)

Prepared by: Ryan Goh (rgca)

Editorial written by: Ryan Goh (rgca)

Subtask 1

Additional constraints: n = 3, m ≤ 10

The subtask exists for one to try on paper. It’s tedious but it’s free points. It’s also a subtask that
can catch most errors in the latter subtasks.

Subtask 2

Additional constraints: n, m ≤ 500

We formulate a simple DP. Let dp(idx, hour,minute) be the minimum number of turns re-
quired to kill monsters idx to m, when starting the hour hand at hour and the minute hand at
minute. We ignore the parameter hour if minute is not 0.

We have 2 simple transitions: either go to dp(idx, new hour,minute+1) or dp(idx, new hour,minute−
1), both with cost of 1. In the event that the minute or hour hand exactly falls onto the idx-th
monster, we then transition to dp(idx+ 1, new hour, new minute) with cost 0.

Notice this does not form a directed acyclic graph as one can move the minute hand clockwise
and then anticlockwise again forming an infinite loop. Hence, we do BFS instead of DP. How-
ever, since weights can be 1 or 0, we can use either Dijkstra or modified BFS known as 0-1
bfs, using a priority queue or deque respectively. We start our BFS / Dijkstra from idx = 0
(assuming zero-indexed), hour = n and minute = n.

There might be other ways to solve this subtask with better constants or time complexity, we
only explained the most intuitive one.

Time complexity: O(n2m)

Task Editorial Singapore Informatics League 2025 54

Subtask 3

Additional constraints: n ≤ 5000, m ≤ 500

We can cut down the number of states in the DP. Let dp(idx, hour, last killed) be the minimum
number of turns required to kill monsters idx to m, when starting the hour hand at hour. We
also keep track on whether monster idx− 1 is killed by the minute hand or the hour hand using
a boolean.

Interestingly, with just this information, we can figure out where the hour and minute hand is
right now. If the monster is killed by the hour hand, the minute hand must be at zero; if not the
minute hand is at the position of the last monster (or at n if there is no last monster).

For our transitions, we have 4 cases: move the minute hand clockwise or anticlockwise; or
move the hour hand clockwise or anticlockwise to kill the idx-th monster. Use some careful
math and case work (for example, whether any of the hands move past number n on the clock)
for all the cases. We then call our dp with idx = 0 (assuming one-indexed) and hour = n.

Time complexity: O(nm)

Subtask Answer
1 82
2 3457519
3 32873314

Task Editorial Singapore Informatics League 2025 55

Task 25: Mahjong

Authored by: Brian Lee (penguin133)

Prepared by: Brian Lee (penguin133)

Editorial written by: Brian Lee (penguin133)

Note

In the following solution, we will denote a winning tile as a tile which when drawn, allows
Brian to win, and a winning hand as a hand in which Brian can win.∑

n denotes the sum of n over all test cases in a subtask.

Subtask 1

Additional constraints: n ≤ 6000 and
∑

n = 30000

In this subtask, n is small enough for solutions of time complexity resembling O(n2) or O(n2 log n)
to pass. To solve this subtask, we can check if every tile is a winning tile by adding it to the
hand, and then checking if the current hand is a winning hand.

To check if a tile is a winning tile, notice that the only way to use tiles of type 1 is to form
consecutive runs of tiles of types 1, 2, 3, . . . , k − 1, k. This means that the number of tiles of
types 2, 3, 4, . . . , k − 1, k must be greater than or equal to the number of tiles of type 1. We
can then form the runs as required, and subtract the number of tiles used for each type from
2, 3, . . . , k − 1, k.

After which, this is equivalent to solving the problem with only tiles ranging from 2 to n. We
can repeat this process until all tiles are used, or when the condition above is violated.

This idea can be implemented with a segment tree supporting range minimum query and range
subtract operations, which would have a time complexity of O(n2 log n), or the simulation
could also be done with a deque / queue or prefix sums of the sort, having a time complexity
of O(n2). Other viable solutions include coding the basic O(n2k) brute force and running it on
your computer for a sufficient amount of time.

Task Editorial Singapore Informatics League 2025 56

Subtask 2

Additional constraints:
∑

n ≤ 2× 106 and k ≤ 10

We will start by deriving a few observations of the winning hand.

Observation 1: In a winning hand, there is exactly one way to group the tiles into consecutive
runs of size k.

This can be seen from the observation that we made in subtask 1 when we check for a winning
hand. If we consider tile types in increasing order, at each point there is exactly 1 way for the
tiles of the smallest type to be grouped, and we can continuously repeat this until all tiles are
used or it is impossible to group tiles.

This allows us to make the second observation:

Observation 2: Drawing a tile of type x will not affect the groupings of tiles of type y where
1 ≤ y ≤ x− k or x+ k ≤ y ≤ n.

We will show each side of the inequality separately. Consider tiles of type y where 1 ≤ y ≤
x−k. Then suppose we perform our checking algorithm upwards from tile 1. Since the number
of groups starting at each tile i is fixed for all i for a winning hand, increasing the number of
tiles for any type that is ≥ y+ k will definitely not affect the groupings for tiles of type y, since
all such groupings involve no tiles of type ≥ y + k.

The second inequality can also be shown, by performing the checking algorithm in decreasing
tile types from tiles of type n to 1. From here, it is not hard to derive that tiles of type ≤ y − k
will not affect the groupings of type y.

Using the above 2 observations, we notice that drawing tile x will only affect the groupings of
tile types y where x−k+1 ≤ y ≤ x+k−1. Hence, we can presimulate the checking algorithm
from both ends, and for each index i, store the number of remaining tiles for each type j where
i− k+1 ≤ j < i and i < j ≤ i+ k− 1. Then, we can try drawing a tile of type i and simulate
the checking algorithm with the relevant 2k − 1 indices, which would work in O(k) time.

This algorithm works in O(nk) and is sufficient to solve the second subtask.

Subtask 3

Additional constraints:
∑

n ≤ 2× 106.

In this subtask, we need to further speed up our algorithm by making more observations.

Task Editorial Singapore Informatics League 2025 57

Observation 3: Let a winning tile be x. Then all winning tiles y have the form y = x + ak,
where a is an integer.

To show this, for each 0 ≤ i < k, consider the number of tiles that have a type y such that y ≡ i
(mod k). In each group of k tiles, all k tile types have a distinct remainder when divided by k,
and hence there must be an equal number of tiles that have a type y such that y ≡ i (mod k)
for all 0 ≤ i < k. Hence it can be seen that all winning tiles must have the same remainder
when divided by k, and in other words, all winning tiles y are of the form pk+ q, where p, q are
non-negative integers and q is constant.

From here, we can make the following observation:

Observation 4: The values of a which produce a winning tile form a contiguous range.

The idea for this is to consider how the drawn tile will contribute to the group. There are 2 main
ways – either by merging 2 disjoint runs of tiles to form a contiguous run of length k, or by
extending a run of length k − 1 in either direction.

If tile x merges 2 disjoint runs, then tile x will be the only winning tile since any other tile
would still result in there being 2 disjoint runs of length < k.

If tile x extends a run of length k − 1, let the original length of the run be l, where l = pk − 1
(since the run should be one off from being able to group all the tiles together). Then there are
(l+ 1)/k = p values of x which win, and notably, there can only one of such runs since having
more than one would mean that drawing one tile is not enough to win the game.

Hence, given the above observation, we can formulate an algorithm as follows:

1. Find a winning tile x.

2. Find the lower and upper bounds of a such that x+ ak is a winning tile.

3. Output the number of valid a.

The first step can be done through the simulation by finding the first tile type that has insufficient
to cover the tiles before it.

The second step can be done through binary search and simulation for checking.

This algorithm works in O(n log n) and is sufficient to pass this subtask.

Alternative solutions include noticing that only O(n
k
) tiles need to be checked for winning tiles,

and checking for such tiles in O(k) time, either by using prefix sums or a segment tree to
maintain the values of the k tile types before and after. The checking algorithm is similar to the
one in subtask 2.

Task Editorial Singapore Informatics League 2025 58

This algorithm would run in O(n) or O(n log n).

Subtask Answer
1 115
2 174019
3 9112

Task Editorial Singapore Informatics League 2025 59

Task 26: Slimes

Authored by: Sun Beichen (TheRaptor)

Prepared by: Chua Wee Chong (sheep)

Editorial written by: Chua Wee Chong (sheep)

Subtask 3

Additional constraints: None

We will consider the full solution first.

Define an interval [l, r] to be good if and only if a[l]+a[l+1]+· · ·+a[r] ≥ max{a[1], a[2], . . . , a[n]}.
Define the length of an interval [l, r] to be r − l + 1, written as len([l, r]) = r − l + 1.

We can restate the problem: For all slimes, find the length of the smallest good interval that
contains it.

Consider the following algorithm:

1. For all i, find the minimum r[i] such that [i, r[i]] is a good interval. Call this set of intervals
X . If r[i] does not exist, we insert [i,∞] instead.

2. For all i, find the maximum l[i] such that [l[i], i] is a good interval. Call this set of intervals
Y . If l[i] does not exist, we insert [∞, i] instead.

3. For all i, find the smallest interval in X ∪ Y such that i is contained within that interval.

We will prove that the algorithm is correct.

Suppose that there exists some i such that [A,B] forms a good interval and 1 ≤ A ≤ i ≤ B ≤ n.
Further, suppose that len([A,B]) is strictly smaller than all other intervals in X ∪Y that contain
i. Also, suppose [A,B] is not an interval in X ∪ Y .

From X , we have the interval [A, r[A]]. If r[A] ≥ i, then [A, r[A]] would contain i. Due to the
assumption that len([A,B]) < len([A, r[A]]), this would imply that B < r[A]. Since [A,B] is
a good interval, this violate the minimality of r[A].

Task Editorial Singapore Informatics League 2025 60

Hence, it must be that r[A] < i. Now, consider the interval [A, i]. It must be a good interval, as
A < r[A] < i, that is, [A, i] contains [A, r[A]] as a sub-interval. An upper bound on the length
of the smallest interval containing i would be len([A, i]).

Since we assume that len([A,B]) is strictly smaller than all the intervals in X ∪ Y that contain
i, it must be B < i. However, we must also have that [A,B] contains i, that is, B ≥ i. We arrive
at a contradiction.

Hence, for all i, there does not exist any interval not within X ∪Y that has a shorter length than
all other intervals that contain i in X ∪ Y .

The above proof shows that considering those 2n intervals is sufficient to find the answer for
all i. To construct the intervals, we can perform a sliding window twice: once forwards and
another backwards. The details are left to the reader as an exercise. This can be done in O(n).

After finding the required intervals, tag each of them with its own length. To find the minimum
length interval for each i, either a sweep line + set method or a segment tree can be used. Again,
the details are left as an exercise to the reader. This can be done in O(n log n).

Time complexity: O(n log n)

Subtask 1

Additional constraints: n ≤ 500

This subtask is for less optimised solutions.

Some possible less optimised solutions are:

• Computing all O(n2) possible intervals.

• Without using a sliding window, computing intervals in O(n2) time total.

• Less optimised methods of finding the minimum length interval for each i, O(n) time
each, O(n2) time total.

Subtask 2

Additional constraints: n ≤ 10000

Refer to Subtask 1.

Task Editorial Singapore Informatics League 2025 61

Subtask Answer
1 48389
2 21985998
3 222900402216

Task Editorial Singapore Informatics League 2025 62

Level 4

Task 27: Bad Addition

Authored by: Lim Rui Yuan (oolimry)

Prepared by: Chua Wee Chong (sheep)

Editorial written by: Chua Wee Chong (sheep)

Notes

Define ab to be string concatenation of a and b.
Define len(a) to be the number of digits in a.
Define ⋆ to be the bad addition operator. That is, n ⋆ m means to do bad addition on n to m.
A formal definition of bad addition is: Given integers a, b of n digits written as a1a2 . . . an and
b1b2 . . . bn, a ⋆ b = (a1 + b1)(a2 + b2) . . . (an + bn)

If either of them is shorter than length n, we can left-pad it with zeros.

Subtask 1

Additional constraints: k = 10

Since k is small, one can work this out by simulating the process either by hand or by using
Python which supports arbitrarily large integers.

However, this solution might not work as well for larger k as the number of digits the integer
becomes a significant bottleneck.

Time complexity: O(k)

Subtask 2

Additional constraints: k = 272727

Task Editorial Singapore Informatics League 2025 63

Because 1 ≤ n ≤ 99999, n is at most 5 digits. Let ab be some integer with len(ab) = x + 5
digits, such that len(b) = 5 and len(a) = x. If ab is too short, we can left-pad it with zeroes.

Observation: If n ⋆ b = a′b′, where a′ is y digits long and b′ is 5 digits long, then n ⋆ ab = aa′b′.

This observation comes about because n itself is at most 5 digits, so further digits will not be
affected by bad addition. Hence, we can write numbers in the form ab and use the observation.
Due to modulo properties, we can store a mod 109 + 7 instead of a. This is also because a is
unaffected by bad addition.

Time complexity: O(k)

Subtask 3

Additional constraints: k = 407600000000000000

Now, k is very large and it is infeasible to simulate bad addition.

Define fx(b) = ((b ⋆ n) ⋆ n) · · · ⋆ n) such that ⋆ appears x times.

Observation: It can be shown by induction that fx(ab) = aaxbx for an arbitrary integer x.

Further, if fx(b0) = axbx and fy(bx) = ax+ybx+y, then fx+y(a0b0) = a0axax+ybx+y. In other
words, we can chain bad addition operations together easily.

To get to our desired k, we first pre-compute operations by powers of two. That is, for all
0 ≤ b ≤ 99999, we first find f1(b). Then, using our observation above, we can calculate f2(b)
by setting x = 1, y = 1. Similarly for f4(b), f8(b)...f259(b). This step takes O(n log k) time.

Afterwards, we can decompose k into binary digits and apply the same trick. For example, if
k = 6 = 4 + 2, we would do f4+2(0) = f4(f2(0)). In this way, we will only take O(n log k)
time.

As an implementation detail, because the values get large quickly, we have to store the results
of f as (a, len(a), b). In this way, we can handle both the string concatenation and modulo
operations properly. Without len(a), simulating string concatenation would not be possible.

Time complexity: O(n log k)

Subtask Answer
1 134927836
2 430188270
3 664305046

Task Editorial Singapore Informatics League 2025 64

Task 28: Company Management

Authored by: Sun Beichen (TheRaptor)

Prepared by: Sun Beichen (TheRaptor)

Editorial written by: Sun Beichen (TheRaptor)

Subtask 1

Additional constraints: p[i]= 1 for all 1 ≤ i ≤ n

The constraints form a star graph.

If the root has x hours, then all leaves should have m − x hours. While the answer can be
computed by trying all values of x, an interesting observation is that an optimal distribution of
hours can be attained by either assign all m hours to the root, or to all leaves. This is because
if both the root and the leaves have hours, then we can always reduce hours for the side with
lower total value and increase hours for the others.

Subtask 2

Additional constraints: m = 1

Nodes with an hour assigned to them must not share ancestor-descendant relationships. The
maximum sum of values of nodes without ancestor-descendant relationships can be calculated
with dynamic programming. Let DP (a) represent the answer for the subtree of node a. Let
array c represent the children of node a and let its size be d. By considering whether an hour is
assigned to node a, we can see that DP (a) = max(k[a], DP (c[0])+DP (c[1])+ ...+DP (c[d−
1])). This calculates the answer in O(n).

Subtask 3

Additional constraints: No additional constraints

A key observation is that even for larger values of m, there will exist an optimal solution where
all pairs of ancestor-descendant nodes will not both have nonzero hours. This is because, when

Task Editorial Singapore Informatics League 2025 65

given some optimal distribution of hours that does not satisfy this condition, we can first locate
the node that:

1. has non-zero hours assigned

2. has descendant(s) with non-zero hours

3. has the greatest depth out of all nodes satisfying the previous requirements

The reasoning mentioned in subtask 1 can be applied to this node and its descendants, thus
reducing either the node’s hours or the descendant’s hours to zero. This reduces the number of
ancestor-descendant pairs with non-zero hours, and the process can be applied repeatedly until
no such pairs remain. Thus, there exists an optimal solution with no such pairs. The answer can
be found by applying the dynamic programming algorithm from subtask 2, then multiplying the
result by m.

Subtask Answer
1 428036307
2 34480011
3 573574206

Task Editorial Singapore Informatics League 2025 66

Task 29: Mixing Sauces

Authored by: Lim Rui Yuan (oolimry)

Prepared by: Ryan Goh (rgca)

Editorial written by: Shor the Duck (Ernest Kiew)

Subtask 1

Additional constraints: n = 2, m = 10 We can solve this subtask by considering equations.

If we use x parts of base 1 and y parts of base 2, such that x+ y = 1, our final result is the pair
{x× c[1] + y × c[2], x× d[1] + y × d[2]}.

If we want the saltiness to be equal C and sweetness to be equal D, then we form the equations:
x× c[1] + y × c[2] = C
x× d[1] + y × d[2] = D

Since c[1], c[2], d[1], and d[2] are all constants, both equations are linear equations.

Using some school Mathematics, we can solve for x and y. If a pair of solutions x and y exist,
then it is possible to make that sauce.

Subtask 2

Additional constraints: n = 3, m = 6

It is generally a good idea to visualise problems when you do not have ideas.

In this case, a 2-dimensional visualisation where the saltiness is the x-coordinate and sweetness
is the y-coordinate is particularly helpful.

Using this visualisation, we plot three points corresponding to our base sauces.

We define a reachable sauce as a sauce that can be made using only our base sauces.

We must now figure out the area of sauces that are reachable. Then, a sauce can be made if its
coordinate is reachable.

Task Editorial Singapore Informatics League 2025 67

Firstly, it is obvious that the points on the base sauces are reachable.

We can simply use only that base sauce.

But what if we want to make any other sauce?

Let’s start the sauce-making process with a choice of the first base sauce.

This puts our position at the position of the first base sauce.

The key observation is that when we add some amount of the second base sauce, we are moving
our current position towards that second base sauce.

In fact, every position on the line between the positions of both base sauces is reachable this
way.

Now, when a third base is added, we can start with any point on the line between the first two
sauces, and move towards the third base.

This forms a triangle of reachable sauces. (See Figure 1 for illustration)

Figure 1: Starting from a point p between points A and B, we can fill in the space within the
triangle.

Task Editorial Singapore Informatics League 2025 68

There is an infinite number of possible points p between points A and B, but by picking an
appropriate p, we can reach any point inside the triangle.

Hence, we just output 1 if the point is within the triangle ABC, and 0 otherwise.

Subtask 3

Additional constraints: n = 100, m = 40

If we consider the triangle formed by every triplet of points, we know that any area covered by
any triangle is reachable.

If we combine the area formed by all triangles, we actually get a Convex Hull!

You can refer to Wikipedia to learn more.

The outermost sauces form a convex shape, beyond which we cannot reach by any combination
of sauces.

By checking if each point is within the Convex Hull, we can solve the problem. (See Figure 2
for illustration)

Figure 2: Subtask 3’s input visualised, kindly provided by the problem preparer

Subtask Answer
1 1001100011
2 110100
3 1000111101001110101011110000101101111110

Task Editorial Singapore Informatics League 2025 69

https://en.wikipedia.org/wiki/Convex_hull

Task 30: Mountain Ranges

Authored by: Yaw Chur Zhe (pavement)

Prepared by: Yaw Chur Zhe (pavement)

Editorial written by: Yaw Chur Zhe (pavement)

Subtask 1

Additional constraints: 1 ≤ n ≤ 20

In this subtask, it is enough to iterate over all non-empty subsequences of the given array.
Checking if a subsequence is beautiful can be done straightforwardly in O(n2) time, or with a
monotonic stack in O(n) time.

Time complexity: O(n2n)

Subtask 2

Additional constraints: 1 ≤ n ≤ 2000

Let us analyse the structure of beautiful mountain ranges. Let a be a beautiful mountain range.
We can make the following observations:

1. |a| (the length of a) is odd. Since the shortest
⌊
|a|
2

⌋
mountains will never be able to see

strictly more than half of all mountains (and hence are not vantage points), there can never
be strictly more than |a|

2
vantage points if |a| is even.

2. Let m be the median of a (the median is unique because |a| must be odd). Then, all
mountains shorter than or equal to m must form a contiguous subarray of mountains in
a. Otherwise, m would not be a vantage point, resulting in strictly less than |a|

2
vantage

points, a contradiction.

3. For mountains taller than m, they form a bitonic sequence surrounding the contiguous
subarray of mountains formed by mountains shorter than or equal to m. This is the only
possible configuration where all the mountains taller than m are vantage points.

Task Editorial Singapore Informatics League 2025 70

https://codeforces.com/blog/entry/143633

Figure 3: Structure of a. The red block is strictly decreasing, and the blue block is strictly
increasing.

Graphically, the structure of a will look like Figure 3.

If a mountain range of length l > 1 exists, a mountain range of length l − 2 must surely
exist. This motivates an approach that involves binary searching on the maximum length l of a
mountain range. Subsequently, we will assume that l has been fixed.

Let x be the index of the rightmost element in the red block, and let y be the index of the leftmost
element in the blue block. Observe that at least one of x or y must exist. This is because, if both
red and blue blocks were empty, then m would not be the median in the black block (assuming
|a| > 1). Without loss of generality, assume that x exists (reverse the array if only y exists), and
if y also exists, further assume that x is shorter than y (h[x] < h[y]).

We can iterate over possible values of x. Let lds[x] be the length of the longest decreasing
subsequence (in the given array h) that ends at x.3 This tells us the maximum length of the red
block. We need the blue block to have length lblue = max(0,

⌊
l
2

⌋
− lds[x]). Let lis[y] be the

length of the longest increasing subsequence (in h) that starts at y. In other words, we need
lis[y] ≥ lblue. We do no worse by setting y to be the rightmost possible index that satisfies
lis[y] ≥ lblue and h[x] < h[y]. Finding such a y can be done in O(n).4

Now that we have our candidate values of x and y, we can count the number of values in
h[x+ 1], h[x+ 2], . . . , h[y − 1] that are strictly less than h[x]. If this count is at least

⌈
l
2

⌉
, then

there exists a mountain range with length l. Notice that there is no need to explicitly determine
the value of m.

Since there are n candidates values for x, and each of them require O(n) time to process, the
overall time complexity is O(n2).

Time complexity: O(n2)

Subtask 3

Additional constraints: 1 ≤ n ≤ 200 000

3Pre-computation of lds requires O(n log n) time, a standard longest increasing subsequence problem.
4Remember to handle the edge case where y does not exist (lblue = 0).

Task Editorial Singapore Informatics League 2025 71

https://cp-algorithms.com/dynamic_programming/longest_increasing_subsequence.html

In the last subtask, we may use data structures to speed up the process of finding y. By per-
forming a binary search over a Segment Tree and sweep-line techniques, the time complexity
can be reduced to O(n log n).

Time complexity: O(n log n)

Subtask Answer
1 60
2 7388
3 441672

Task Editorial Singapore Informatics League 2025 72

https://cp-algorithms.com/data_structures/segment_tree.html#searching-for-the-first-element-greater-than-a-given-amount

	Level 1
	Task 1: Broken Key
	Task 2: Cats and Parking
	Task 3: Distribution
	Task 4: Duck Fight
	Task 5: Bench
	Task 6: Schedule
	Task 7: Typing Test
	Task 8: Ducks, Rabbits and Weirdos

	Level 2
	Task 9: AANDNANDT
	Task 10: 90
	Task 11: Fisherman
	Task 12: Pringles Sort
	Task 13: Bamboo
	Task 14: E-sign
	Task 15: Investment
	Task 16: Bamboo 2
	Task 17: Compressor

	Level 3
	Task 18: Jokers
	Task 19: Musical Chairs
	Task 20: Volcano
	Task 21: Card Draw
	Task 22: Cup Stacking
	Task 23: Mildly Angry Ducks
	Task 24: Tick Tock
	Task 25: Mahjong
	Task 26: Slimes

	Level 4
	Task 27: Bad Addition
	Task 28: Company Management
	Task 29: Mixing Sauces
	Task 30: Mountain Ranges

